
Reading: Jurafsky & Martin: 5.2–5.5.2, 5.6, 12.4, 14.0–1,
14.3–4, 14.6–7. Bird et al: 8.6.

Computational
Linguistics 9

9. Statistical parsing

Frank Rudzicz
Toronto Rehabilitation Institute-UHN,
Department of Computer Science, University of Toronto

CSC 2501 / 485
Fall 2015

Copyright © 2015 Frank Rudzicz,
Graeme Hirst, and Suzanne
Stevenson. All rights reserved.

2

General idea:
◦ Assign probabilities to rules in a context-free grammar.

◦ Use a likelihood model.

◦ Combine probabilities of rules in a tree.

◦ Yields likelihood of a parse.

◦ The best parse is the most likely one.

Statistical parsing 1

3

Motivations:

◦ Uniform process for attachment decisions.

◦ Use lexical preferences in all decisions.

Statistical parsing 2

4

1. Assign a probability to each rule of grammar,
including lexical rules.

–Parse string of input words with probabilistic rules.
The can will rust.

2. Assign probabilities only to non-lexical rules.
–Probabilistically tag input words with syntactic

categories using a part-of-speech tagger.

–Consider the syntactic categories to be terminals, parse
that string with probabilistic rules.

Det N Modal Verb.

Two general approaches

5

Part-of-speech (PoS) tagging:
Given a sequence of words w1 … wn (from well-formed text),
determine the syntactic category (PoS) Ci of each word.

I.e, the best category sequence 𝐶1 … 𝐶𝑛 to assign to the word
sequence w1 … wn.

Most likely

Part-of-speech tagging 1

6

Example:

Example from Charniak 1997

The can will rust

det modal verb modal verb noun

noun noun verb

verb verb

The can will rust

det modal verb modal verb noun

noun noun verb

verb verb

Part-of-speech tagging 2

7

We cannot get this probability directly.

We should estimate it (through counts).

Hey, let’s approximate it first
(by modifying the formula).

Counts: Need representative corpus.

Part-of-speech tagging 3

8

Look at individual words (unigrams):

Maximum likelihood estimator (MLE):

Count in corpus

POS tagging: Unigram MLE 1

9

Problems of MLE:
◦ Sparse data.

◦ Extreme cases:
a. Undefined if w is not in the corpus.
b. 0 if w does not appear in a particular category.

POS tagging: Unigram MLE 2

10

Smoothing of formula, e.g.,:

Give small (non-zero) probability value to unseen
events, taken from seen events by discounting them.

Various methods to ensure we still have valid
probability distribution.

POS tagging: Unigram MLE 3

11

Just choosing the most frequent PoS for each word yields 90%
accuracy in PoS tagging.

But:
◦ Not uniform across words.

◦ Accuracy is low (0.9n) when multiplied over n words.

◦ No context: The fly vs. I will fly.

Need better approximations for

POS tagging: Unigram MLE 4

12

Use Bayes’s rule to rewrite:

For a given word string, we want to maximize this, find most
likely C1 … Cn:

So just need to maximize the numerator.

❶ ❷

POS tagging: Bayesian method

13

Approximate ❶P(C1 … Cn) by predicting each
category from previous N – 1 categories: an
N-gram model.

Bigram (2-gram) model:

Posit pseudo-categories START at C0 , and END as
Cn. Example:

Warning: Not
the same n!!

Approximating probabilities 1

𝑃 𝐶1…𝐶𝑛 ≈ ෑ

𝑖=1

𝑁

𝑃(𝐶𝑖|𝐶𝑖−1)

14

Approximate ❷P(w1 … wn|C1 … Cn) by assuming
that the probability of a word appearing in a
category is independent of the words around it.

Lexical generation
probabilities

Approximating probabilities 2

𝑃 𝑤1…𝑤𝑛|𝐶1…𝐶𝑛 ≈ ෑ

𝑖=1

𝑁

𝑃(𝑤𝑖|𝐶𝑖)

15

Why is 𝑃(𝑤|𝐶) better than 𝑃(𝐶|𝑤)?
◦ 𝑃(𝐶|𝑤) is clearly not independent of surrounding categories.
◦ E.g., those octopodes never stop fucking/VBG vs. look at those fucking/ADJ octopodes

◦ The probabilities of lexical generation are more independent.

◦ Complete formula for PoS includes bigrams, and so it does capture
some context.

Approximating probabilities 3

16

Really should use
smoothed MLE; cf slide 10

MLE for categories
not the same as for

words; cf slide 8

❸

Putting it all together

17

Want to find the argmax (most probable)
𝐶1 … 𝐶𝑛.

Brute force method: Find all possible sequences of categories
and compute P.

That’s unnecessary and stupid: Our approximations assume
lots of independence:
◦ Category bigrams: 𝐶𝑖 depends only on 𝐶𝑖 – 1.

Lexical generation: 𝑤𝑖 depends only on 𝐶𝑖.

◦ Hence we do not need to enumerate all sequences independently.

Finding max 1

18

Bigrams:
Markov model.

◦ States are categories and transitions represent bigrams.

Lexical generation probabilities:
Hidden Markov model.

◦ Words are outputs (with given probability) of states.

◦ A word could be the output of more than one state.

◦ Current state is unknown (“hidden”).

Finding max 2

19

Artificial corpus of PoS-tagged 300 sentences using only Det, N, V, P.
◦ The flower flowers like a bird.

Some birds like a flower with fruit beetles.
Like flies like flies.

…

Some lexical generation probabilities:

P(the|Det) = .54 P(like|N) = .012 P(flower|N) = .063 P(birds|N) = .076

P(a|Det) = .36 P(like|V) = .1 P(flower|V) = .050 P(flies|V) = .076

P(a|N) = .001 P(like|P) = .068 P(flowers|N) = .050 P(flies|N) = .025

⋮ ⋮ P(flowers|V) = .053 ⋮

⋮

Based on an example in section 7.3 of: Allen, James. Natural
Language Understanding (2nd ed), 1995, Benjamin Cummings.

Example

20

Bigram
Ci–1, Ci

Count Ci–1 Count Ci–1,Ci P(Ci|Ci–1) Estimate

START, Det 300 213 P(Det| START) 0.710

START, N 300 87 P(N| START) 0.290

Det, N 558 558 P(N|Det) 1.000

N, V 883 300 P(V|N) 0.340

N, N 883 51 P(N|N) 0.058

N, P 883 307 P(P|N) 0.348

N, END 883 225 P(END|N) 0.255

V, N 300 106 P(N|V) 0.353

V, Det 300 119 P(Det|N) 0.397

V, END 300 75 P(END|V) 0.250

P, Det 307 226 P(Det|P) 0.740

P, N 307 81 P(N|P) 0.260

Markov model: bigram table

21

START

Det

N

V

P

END

.71

.397

.25

.255

.34

8

.26

.353

.34

.74

1.0

.29

.058

Markov model: transitions

22

P(the|Det) = .54 P(like|N) = .012 P(flower|N) = .063 P(birds|N) = .076

⋮ ⋮ ⋮ ⋮

like
.068

like
flower

flies
birds

a

.076
.025

.063.012

.001

the

a

.54

.36
like

flower

flies

.05
.076

.1
Det

N

V

P

END

.71

.397

.25

.225

.34

8

.26

.353

.34

.74

1.0

.29

START

.058

HMM: lexical generation

23

Given the observed output, we want to find the most likely
path through the model.

The can will rust

det modal verb modal verb noun

noun noun verb

verb verb

Hidden Markov models 1

24

At any state in an HMM, how you got there is irrelevant
to computing the next transition.
◦ So, just need to remember the best path and probability up to that point.

◦ Define PCi–1 as the probability of the best sequence up to state Ci–1.

Then find Ci that maximizes
PCi–1 × P(Ci|Ci–1) × P(w|Ci) ❸ from slide 16

Hidden Markov models 2

25

Given an HMM and an observation 𝑂 of a sequence of its output,
Viterbi finds the most probable sequence 𝑆 of states that
produced 𝑂.
◦ 𝑂 = words in a sequence, 𝑆 = PoS tags of sentence

Parameters of HMM based on large training corpus.

Viterbi algorithm

26

Consider tags as terminals
(i.e., use a PoS tagger to pre-process input texts).
Det N Modal Verb.

For the probability of each grammar rule, use MLE.

Probabilities are derived from hand-parsed corpora (treebanks).
◦ Count frequency of use c of each rule 𝐶 → 𝛼, for each non-terminal 𝐶 and each

different RHS 𝛼.

What are some problems with this approach?

Statistical chart parsing 1

27

MLE probability of rules:
◦ For each rule 𝐶 → 𝛼 :

Takes no account of the context of use of a rule:
independence assumption.

❹

Statistical chart parsing 2

28

29

:
:

30

⬅

⬅

:
:

31

32

33

Probability of chart entries — completed
constituents:

where 𝑒0 is the entry for current constituent, of category 𝐶0;

and 𝑒1 … 𝑒𝑛 are the chart entries for 𝐶1 … 𝐶𝑛 in the RHS of the rule.
NB: Unlike for PoS tagging above, the 𝐶𝑖 are not necessarily lexical categories.

❺

Statistical chart parsing 3

34

Consider a complete parse tree rooted at 𝑆.

Recasting ❺, the 𝑆 constituent will have the
probability

where 𝑛 ranges over all nodes in the tree of 𝑆;
𝑟𝑢𝑙𝑒(𝑛) is the rule used for 𝑛;
𝑐𝑎𝑡(𝑛) is the category of 𝑛.

◦ “Bottoms out” at lexical categories.

❻

Statistical chart parsing 4

35

Evaluation method:
◦ Train on part of a parsed corpus.

(I.e., gather rules and statistics.)

◦ Test on a different part of the corpus.

Evaluation 1

Evaluation: PARSEVAL measures compare parser output to
known correct parse:
◦ Labelled precision, labelled recall.

◦ F-measure = harmonic mean of precision and recall = 2𝑃𝑅 / (𝑃 + 𝑅)

Fraction of correct constituents in output.

36

Fraction of constituents in output that are correct.

Evaluation 2

37

Evaluation: PARSEVAL measures compare parser output to
'known' 'correct' parse:
◦ Penalize for cross-brackets per sentence:

Constituents in output that overlap two (or more) correct ones;
e.g., [[A B] C] for [A [B C]].

◦ [[Nadia] [[fondled] [the eggplant]]]

[[[Nadia] [fondled]] [the eggplant]]

Evaluation 3

38

Problem: Probabilities are based only on structures:

But actual words strongly condition which rule is used (cf Ratnaparkhi).

We can improve the results by conditioning on more factors,
including words.

❹

Improving statistical parsing

39

Head of a phrase: its central or key word.
◦ The noun of an NP, the preposition of a PP, etc.

Lexicalized grammar: Refine the grammar so that rules
take heads of phrases into account — the actual words.
◦ BEFORE: Rule for NP.

AFTER: Rules for NP-whose-head-is-aardvark, NP-whose-head-is-abacus, …,
NP-whose-head-is-zymurgy.

And similarly for VP, PP, etc.

Lexicalized grammars 1

40

Notation: 𝑐𝑎𝑡(ℎ𝑒𝑎𝑑, 𝑡𝑎𝑔) for constituent category cat
headed by head with part-of-speech tag.
◦ e.g., NP(aardvark,NN), PP(without,IN)

NP-whose-head-is-the-NN-aardvark

PP-whose-head-is-the-IN-without

Lexicalized grammars 2

41

TOP → S(bought,VBD)
S(bought,VBD) → NP(week,NN) NP(IBM,NNP)
VP(bought,VBD)
NP(week,NN) → JJ(Last,JJ) NN(week,NN)
NP(IBM,NNP) → NNP(IBM,NNP)
VP(bought,VBD) → VBD(bought,VBD) NP(Lotus,NNP)
NP(Lotus,NNP) → NNP(Lotus,NNP)

Lexical Rules:
JJ(Last,JJ) → Last
NN(week,NN) → week
NNP(IBM,NNP) → IBM
VBD(bought,VBD) → bought
NNP(Lotus,NNP) → Lotus

Michael Collins. Head-driven statistical models for natural language parsing. Computational Linguistics, 29(4), 2003, 589–637.

A lexicalized grammar

42

Number of rules explodes given more heads, but no theoretical change
in parsing (whether statistical or not).

But far too specific for practical use; each head is too rarely used to
determine its probability.

Need something more than regular (unlexicalized) rules and less than
complete lexicalization …

Lexicalized grammars 3

43

Starting from unlexicalized rules:

1. Lexicalization: Consider the head word of each
node, not just its category:

where ℎ𝑒𝑎𝑑(𝑛) is the PoS-tagged head word of node 𝑛.

Needs finer-grained probabilities:
◦ e.g., probability that rule 𝑟 is used, given we are in an NP

whose head is the noun guzzler.

Replaces ❻
from slide 34

Lexicalized parsing 1

44

2. Head and parent: Condition on the head and the
head of the parent node in the tree:

e.g., probability of rule r given that head is the noun guzzler.

e.g., probability that head is the noun guzzler, given
that parent phrase’s head is the verb flipped.

Lexicalized parsing 2

45

Lexical information introduces context into CFG.

Grammar is larger.

Potential problems of sparse data.
◦ Possible solutions: Smoothing; back-off estimates.

If you don’t have data for a fine-grained
situation, use data from a coarser-grained
situation in which it’s contained.

Effects on parsing

46

Can condition on any information available in
generating the tree.

Basic idea: Avoid sparseness of lexicalization by
decomposing rules.
◦ Make plausible independence assumptions.

◦ Break rules down into small steps (small number of
parameters).

◦ Each rule parameterized with word+PoS-tag pair:

S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)

Michael Collins. Head-driven statistical models for natural language parsing. Computational Linguistics, 29(4), 2003, 589–637.

Collins 2003

47

Lexical Rules, with probability 1.0:
tag(word, tag) → word

Internal Rules, with treebank-based probabilities.
Separate terminals to the left and right of the head;
generate one at a time:

𝑋, 𝐿𝑖, 𝐻, and 𝑅𝑖 all have the form cat(head,tag).
Notation: Italic lowercase symbol for (head,tag):

Collins’ first model 1

48

Assume there are additional 𝐿𝑛 + 1 and 𝑅𝑚 + 1 representing
phrase boundaries (“STOP”).

Example:
S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)
n = 2, m = 0 (two constituents on the left of the head, zero on the right).

X = S, H = VP, L1 = NP, L2 = NP, L3 = STOP, R1 = STOP.
h = (bought,VBD), l1 = (IBM,NNP), l2 = (week,NN).

Distinguish probabilities of heads Ph, of left constituents Pl, and
of right constituents Pr.

Collins’ first model 2

49

Generate head constituent

Generate left modifiers (stop at STOP) Generate right modifiers
(stop at STOP)By independence assumption

Probabilities of internal rules 1

50

Example:
P(S(bought,VBD)

→ NP(week,NN) NP(IBM,NNP) VP(bought,VBD))

≈ Ph(VP | S, bought,VBD)
× Pl(NP(IBM,NNP) | S, bought,VBD, VP)

× Pl(NP(week,NN) | S, bought,VBD, VP)
× Pl(STOP | S, bought,VBD, VP)

× Pr(STOP | S, bought,VBD, VP)

Generate head constituent

Generate left
modifiers

Generate right modifiers

Probabilities of internal rules 2

52

Backs off …
◦ to tag probability when no data for specific word;

◦ to complete non-lexicalization when necessary.

Collins’ first model 3

53

Model 2: Add verb subcategorization and argument/adjunct distinction.

Model 3: Integrate gaps into model.
◦ Especially important with addition of subcategorization.

Collins’ 2nd and 3rd models

54

Model 2 outperforms Model 1.

Model 3: Similar performance, but identifies traces too.

Model 2 performs best overall:
◦ LP = 89.6, LR = 89.9 [sentences ≤ 100 words].

◦ LP = 90.1, LR = 90.4 [sentences ≤ 40 words].

Rich information improves parsing performance.

Results and conclusions 3

55

Strengths:
◦ Incorporation of lexical and other linguistic information.

◦ Competitive results.

Weaknesses:
◦ Supervised training.

◦ Performance tightly linked to particular type of corpus
used.

Results and conclusions 2

56

Importance to CL:
◦ High-performance parser showing benefits of lexicalization

and linguistic information.

◦ Publicly available, widely used in research.

Results and conclusions 3

57

The inside-outside algorithm is a glorious
generalization of the forward-backward algorithm
that learns grammars without annotated data.

Unsupervised inside-outside

𝑁1

𝑁𝑗

𝑤𝑝 … 𝑤𝑞𝑤1 … 𝑤𝑝−1 𝑤𝑞+1 … 𝑤𝑚

𝜷𝒋 𝒑, 𝒒 = 𝑷(𝒘𝒑:𝒒|𝑵𝒑𝒒
𝒋
, 𝑮)

𝜶𝒋 𝒑, 𝒒 = 𝑷(𝒘𝟏:𝒑−𝟏, 𝑵𝒑𝒒
𝒋
, 𝒘𝒒+𝟏:𝒎|𝑮)

Manning & Schütze: 11.3.1-11.3.5

