Computational Linguistics CSC 2501/485 Fall 2015

9. Statistical parsing

Frank Rudzicz Toronto Rehabilitation Institute-UHN, Department of Computer Science, University of Toronto

Reading: Jurafsky & Martin: 5.2–5.5.2, 5.6, 12.4, 14.0–1, 14.3–4, 14.6–7. Bird et al: 8.6.

Copyright © 2015 Frank Rudzicz, Graeme Hirst, and Suzanne Stevenson. All rights reserved.

Statistical parsing 1

General idea:

- Assign **probabilities** to **rules** in a context-free grammar.
 - Use a likelihood model.
- Combine probabilities of rules in a tree.
 - Yields likelihood of a parse.
- The best parse is the most likely one.

Statistical parsing 2

Motivations:

- Uniform process for attachment decisions.
- Use lexical preferences in all decisions.

Two general approaches

- 1. Assign a probability to each rule of grammar, including lexical rules.
 - Parse string of input words with probabilistic rules. The can will rust.
- 2. Assign probabilities only to non-lexical rules.
 - Probabilistically tag input words with syntactic categories using a **part-of-speech tagger**.
 - Consider the syntactic categories to be terminals, parse that string with probabilistic rules.
 Det N Modal Verb.

Part-of-speech tagging 1

Part-of-speech (PoS) tagging:

Given a sequence of words $w_1 \dots w_n$ (from well-formed text), determine the syntactic category (PoS) C_i of each word.

I.e, the best category sequence $C_1 \dots C_n$ to assign to the word sequence $w_1 \dots w_n$.

Most likely

Part-of-speech tagging 2

Example:

The	can	will	rust
det	modal verb	modal verb	noun
	noun	noun	verb
	verb	verb	

Example from Charniak 1997

Part-of-speech tagging 3

$$P(C_1 \dots C_n | w_1 \dots w_n) = \frac{P(C_1 \dots C_n \wedge w_1 \dots w_n)}{P(w_1 \dots w_n)}$$

We cannot get this probability directly.

We should estimate it (through counts).

Hey, let's approximate it first (by modifying the formula).

Counts: Need representative corpus.

Look at individual words (unigrams): $P(C|w) = \frac{P(C \land w)}{P(w)}$

Maximum likelihood estimator (MLE):

$$P(C|w) = \frac{c(w \text{ is } C)}{c(w)}$$

Count in corpus

- Problems of MLE:
- Sparse data.
- Extreme cases:
 - a. Undefined if *w* is not in the corpus.
 - b. o if w does not appear in a particular category.

Smoothing of formula, e.g.,: $P(C|w) \approx \frac{c(w \text{ is } C) + \epsilon}{c(w) + \epsilon}$

Give small (non-zero) probability value to **unseen events**, taken from seen events by discounting them.

Various methods to ensure we still have valid probability distribution.

Just choosing the most frequent PoS for each word yields 90% accuracy in PoS tagging.

But:

- Not uniform across words.
- Accuracy is low (0.9^n) when multiplied over *n* words.
- No context: The fly vs. I will fly.

Need better approximations for

$$P(C_1\ldots C_n|w_1\ldots w_n)$$

POS tagging: Bayesian method

Use Bayes's rule to rewrite:

$$P(C_1 \dots C_n | w_1 \dots w_n)$$

$$= \frac{P(C_1 \dots C_n) \times P(w_1 \dots w_n | C_1 \dots C_n)}{P(w_1 \dots w_n)} 2$$

For a given word string, we want to maximize this, find most likely $C_1 \dots C_n$:

$$\operatorname{argmax}_{C_1...C_n} P(C_1...C_n \mid w_1...w_n)$$

So just need to maximize the numerator.

Approximating probabilities 1

Approximate $1P(C_1 \dots \bigcirc)$ by predicting each category from previous N-1 categories: an **N-gram model**. Warning: Not

Bigram (2-gram) model: N the same n!! $P(C_1 \dots C_n) \approx \prod_{i=1}^{N} P(C_i | C_{i-1})$ Posit pseudo-categories START at C₀, and END as C_n. Example:

 $P(A N V N) \approx P(A|START) \cdot P(N|A) \cdot P(V|N) \cdot P(N|V) \cdot P(END|N)$

Approximating probabilities 2

Approximate $2P(w_1..., w_n|C_1..., C_n)$ by assuming that the probability of a word appearing in a category is **independent** of the words around it.

$$P(w_1 \dots w_n | C_1 \dots C_n) \approx \prod_{i=1}^N P(w_i | C_i)$$

Lexical generation probabilities

Approximating probabilities 3

Why is P(w|C) better than P(C|w)?

- P(C|w) is clearly not independent of surrounding categories.
 - E.g., those octopodes never stop /VBG vs. look at those /ADJ octopodes
- The probabilities of **lexical generation** are *more* independent.
- Complete formula for PoS includes bigrams, and so it does capture some context.

Putting it all together $P(C_1...C_n | w_1...w_n)$ $P(C_1\ldots C_n\wedge w_1\ldots w_n)$ $P(w_1 \dots w_n)$ $P(C_1 \ldots C_n) \times P(w_1 \ldots w_n | C_1 \ldots C_n)$ $P(w_1 \dots w_n)$ $\propto P(C_1 \dots C_n) \times P(w_1 \dots w_n | C_1 \dots C_n)$ $\approx \prod P(C_i | C_{i-1}) \times P(w_i | C_i)$ (3)i=1MLE for categories $\frac{1}{1} \frac{c(C_{i-1}C_i)}{c(C_{i-1})} \times \frac{c(w_i \text{ is } C_i)}{c(C_i)}$ not the same as for words; cf slide 8 Really should use smoothed MLE; cf slide 10

Finding max 1

Want to find the argmax (most probable) $C_1 \dots C_n$.

Brute force method: Find all possible sequences of categories and compute P.

That's unnecessary and stupid: Our approximations assume lots of independence:

• Category bigrams: C_i depends only on C_{i-1} . Lexical generation: w_i depends only on C_i .

• Hence we do not need to enumerate all sequences independently.

Finding max 2

Bigrams: Markov model.

• States are categories and transitions represent bigrams.

Lexical generation probabilities: Hidden Markov model.

• Words are outputs (with given probability) of states.

- A word could be the output of more than one state.
- Current state is unknown ("hidden").

Example

• • •

Artificial corpus of PoS-tagged 300 sentences using only Det, N, V, P.

• The flower flowers like a bird. Some birds like a flower with fruit beetles. Like flies like flies.

Based on an example in section 7.3 of: Allen, James. *Natural Language Understanding* (2nd ed), 1995, Benjamin Cummings.

Some lexical generation probabilities:

<i>P(the</i> Det) = .54	P(like N) = .012	P(flower N) = .063	P(birds N) = .076
P(a Det) = .36	P(like V) = .1	P(flower V) = .050	P(flies V) = .076
P(a N) = .001	P(like P) = .068	P(flowers N) = .050	P(flies N) = .025
:	•	P(flowers V) = .053	:
		•	

Markov model: bigram table

Bigram C _{i-1} , C _i	Count C _{i-1}	Count C _{i-1} ,C _i	$P(C_i C_{i-1})$	Estimate
START, Det	300	213	P(Det START)	0.710
START, N	300	87	P(N START)	0.290
Det, N	558	558	P(N Det)	1.000
N, V	883	300	P(V N)	0.340
N, N	883	51	P(N N)	0.058
N, P	883	307	P(P N)	0.348
N, END	883	225	P(END N)	0.255
V, N	300	106	P(N V)	0.353
V, Det	300	119	P(Det N)	0.397
V, END	300	75	P(END V)	0.250
P, Det	307	226	P(Det P)	0.740
Ρ, Ν	307	81	P(N P)	0.260

Markov model: transitions

HMM: lexical generation

Hidden Markov models 1

Given the observed output, we want to find the most likely path through the model.

Thecanwillrustdetmodal verbmodal verbnounnounnounnounverbverbverbverb

Hidden Markov models 2

At any state in an HMM, how you got there is irrelevant to computing the next transition.

- So, just need to remember the best path and probability up to that point.
- Define P_{Ci-1} as the probability of the best sequence up to state C_{i-1} .

Then find C_i that maximizes $P_{Ci-1} \times P(C_i | C_{i-1}) \times P(w | C_i)$

3 from slide 16

Viterbi algorithm

Given an HMM and an observation *O* of a sequence of its output, Viterbi finds the most probable sequence *S* of states that produced *O*.

• O = words in a sequence, S = PoS tags of sentence

Parameters of HMM based on large training corpus.

Statistical chart parsing 1

Consider tags as terminals

(*i.e.*, use a PoS tagger to pre-process input texts). *Det N Modal Verb.*

For the probability of each grammar rule, use MLE.

Probabilities are derived from hand-parsed corpora (treebanks).

• Count frequency of use c of each rule $C \rightarrow \alpha$, for each non-terminal C and each different RHS α .

What are some problems with this approach?

Statistical chart parsing 2

MLE probability of rules:

• For each rule $C \rightarrow \alpha$:

$$P(C \to \alpha | C) = \frac{c(C \to \alpha)}{\sum_{\beta} c(C \to \beta)} = \frac{c(C \to \alpha)}{c(C)} \quad 4$$

Takes no account of the context of use of a rule: *independence assumption*.

>>> import nltk

>>> nltk.parse.pchart.demo()

- 1: I saw John with my telescope <Grammar with 17 productions>
- 2: the boy saw Jack with Bob under the table with a telescope
 <Grammar with 23 productions>

```
Which demo (1-2)? 1
```

```
s: I saw John with my telescope
parser: <nltk.parse.pchart.InsideChartParser object at 0x7f61288f3290>
grammar: Grammar with 17 productions (start state = S)
    S -> NP VP [1.0]
   NP -> Det N [0.5]
   NP -> NP PP [0.25]
    NP -> 'John' [0.1]
    NP -> 'I' [0.15]
    Det -> 'the' [0.8]
    Det -> 'my' [0.2]
    N -> 'man' [0.5]
    N -> 'telescope' [0.5]
    VP -> VP PP [0.1]
   VP -> V NP [0.7]
   VP -> V [0.2]
    V -> 'ate' [0.35]
    V -> 'saw' [0.65]
    PP -> P NP [1.0]
    P -> 'with' [0.61]
```

```
P -> 'under' [0.39]
```

[-] [0:1] 'I'	[1.0]
. [-] [1:2] 'saw'	[1.0]
[-] [2:3] 'John'	[1.0]
[-] [3:4] 'with'	[1.0]
[-]. [4:5] 'my'	[1.0]
[-] [5:6] 'telescope'	[1.0]
	[1.0]
[-]. [4:5] 'my'	[1.0]
[-] [3:4] 'with'	[1.0]
[-] [2:3] 'John'	[1.0]
. [-] [1:2] 'saw'	[1.0]
[-] [0:1] 'I'	[1.0]
. [-] [1:2] V -> 'saw' *	[0.65]
. > [1:1] VP -> * V NP	[0.7]
. > [1:1] V -> * 'saw'	[0.65]
[-] [3:4] P -> 'with' *	[0.61]
> [3:3] PP -> * P NP	[1.0]
[-> [3:4] PP -> P * NP	[0.61]
> [3:3] P -> * 'with'	[0.61]
[-] [5:6] N -> 'telescope' *	[0.5]
> . [5:5] N -> * 'telescope'	[0.5]
	[0.455]
. [-> [1:2] VP -> V * NP	
. > [1:1] VP -> * V	[0.2]
[-]. [4:5] Det -> 'my' *	[0.2]
> [4:4] NP -> * Det N	[0.5]
> [4:4] Det -> * 'my'	[0.2]

.

>	[4:4]	S	->	* NP VP
>		NP	->	* NP PP
[>		S	->	NP * VP
. []		VP	->	V NP *
[->			->	NP * PP
[]	[3:6]	PP	->	PNP*
			->	NP * PP
[]			->	NP VP *
. [->	[1:2]	VP	->	VP * PP
[>	[4:6]	NP	->	NP * PP
[]	[0:3]	S	->	NP VP *
. [>	[1:3]	VP	->	VP * PP
[]	[2:6]	NP		NP PP *
[>	[2:6]	S	->	NP * VP
. []	[1:6]	VP	->	V NP *
[>	[2:6]	NP	->	NP * PP
. []	[1:6]	VP		VP PP *
[=======]	[0:6]	S	->	NP VP *
. [>	[1:6]	VP	->	VP * PP
[======]				
. [>	[1:6]	VP	->	VP * PP

[1.0] [0.25] [0.05] [0.0455] [0.0375] [0.0305] [0.025] [0.0195] [0.013] [0.0125] [0.006825] [0.00455] [0.0007625] [0.0007625] [0.0003469375] [0.000190625] [0.000138775] [5.2040625e-05] [3.469375e-05] [2.081625e-05] -[1.38775e-05]

Draw parses (y/n)? y please wait...


```
Print parses (y/n)? y
  (S
    (NP I)
    (VP
        (VP (V saw) (NP John))
        (PP (P with) (NP (Det my) (N telescope))))) [2.081625e-05]
(S
        (NP I)
        (VP
            (V saw)
            (NP
                (NP John)
                (NP John)
                (PP (P with) (NP (Det my) (N telescope))))) [5.2040625e-05]
```

Statistical chart parsing 3

Probability of chart entries — completed constituents:

$$P(e_0) = P(C_0 \to C_1 \dots C_n | C_0) \times P(e_1) \times \dots \times P(e_n)$$
$$= P(C_0 \to C_1 \dots C_n | C_0) \times \prod_{i=1}^n P(e_i)$$
5

where e_0 is the entry for current constituent, of category C_0 ; and $e_1 \dots e_n$ are the chart entries for $C_1 \dots Cn$ in the RHS of the rule. **NB:** Unlike for PoS tagging above, the C_i are not necessarily lexical categories.

Statistical chart parsing 4

- Consider a complete parse tree rooted at *S*.
- Recasting **5**, the *S* constituent will have the probability

$$P(S) = \prod_{n} P(rule(n) \mid cat(n))$$
 6

where *n* ranges over all nodes in the tree of *S*; rule(n) is the rule used for *n*; cat(n) is the category of *n*.

• "Bottoms out" at lexical categories.

Evaluation 1

- Evaluation method:
 - Train on part of a parsed corpus. (*I.e.,* gather rules and statistics.)
 - Test on a different part of the corpus.

Evaluation 2

Evaluation: PARSEVAL measures compare parser output to known correct parse:

Labelled precision, labelled recall.

Fraction of constituents in output that are correct.

Fraction of correct constituents in output.

• **F-measure** = harmonic mean of precision and recall = 2PR / (P + R)
Evaluation 3

Evaluation: PARSEVAL measures compare parser output to 'known' 'correct' parse:

- Penalize for cross-brackets per sentence:
 Constituents in output that overlap two (or more) correct ones;
 e.g., [[A B] C] for [A [B C]].
- [[Nadia] [[fondled] [the eggplant]]]
 [[[Nadia] [fondled]] [the eggplant]]

Improving statistical parsing

Problem: Probabilities are based only on structures:

$$P(C \to \alpha | C) = \frac{c(C \to \alpha)}{\sum_{\beta} c(C \to \beta)} = \frac{c(C \to \alpha)}{c(C)} \quad \mathbf{4}$$

But actual words strongly condition which rule is used (cf Ratnaparkhi).

We can improve the results by conditioning on more factors, including words.

Lexicalized grammars 1

Head of a phrase: its central or key word.

• The noun of an NP, the preposition of a PP, etc.

Lexicalized grammar: Refine the grammar so that rules take *heads of phrases* into account — the actual words.

 BEFORE: Rule for NP.
 AFTER: Rules for NP-whose-head-is-aardvark, NP-whose-head-is-abacus, ..., NP-whose-head-is-zymurgy.

And similarly for VP, PP, etc.

Lexicalized grammars 2

Notation: *cat*(*head*, *tag*) for constituent category *cat* headed by *head* with part-of-speech *tag*.

• e.g., NP(aardvark,NN), PP(without,IN)

NP-whose-head-is-the-NN-aardvark

PP-whose-head-is-the-IN-without

 $S(bought, VBD) \rightarrow NP(week, NN) NP(IBM, NNP)$ VP(bought, VBD) $NP(week, NN) \rightarrow JJ(Last, JJ) NN(week, NN)$ $NP(IBM, NNP) \rightarrow NNP(IBM, NNP)$ $VP(bought, VBD) \rightarrow VBD(bought, VBD) NP(Lotus, NNP)$ $NP(Lotus, NNP) \rightarrow NNP(Lotus, NNP)$

 $JJ(Last,JJ) \rightarrow Last$ $NN(week,NN) \rightarrow week$ $NNP(IBM,NNP) \rightarrow IBM$ $VBD(bought,VBD) \rightarrow bought$ $NNP(Lotus,NNP) \rightarrow Lotus$

Lexicalized grammars 3

Number of rules explodes given more heads, but no theoretical change in parsing (whether statistical or not).

But far too specific for practical use; each head is too rarely used to determine its probability.

Need something more than regular (unlexicalized) rules and less than complete lexicalization ...

Lexicalized parsing 1

Starting from unlexicalized rules:

1. Lexicalization: Consider the head word of each node, not just its category:

 $P(S) = \prod_{n} P(rule(n) | head(n)) \leftarrow \text{Replaces 6}$ from slide 34

where head(n) is the PoS-tagged head word of node n.

Needs finer-grained probabilities:

• e.g., probability that rule *r* is used, given we are in an NP whose head is the noun *guzzler*.

Lexicalized parsing 2

2. Head and parent: Condition on the head and the head of the parent node in the tree:

P(Sentence, Tree)

 $=\prod_{n\in\text{Tree}} P(rule(n) | head(n)) \times P(head(n) | head(parent(n)))$

e.g., probability of rule r given that head is the noun guzzler.

e.g., probability that head is the noun *guzzler*, given that parent phrase's head is the verb *flipped*.

Effects on parsing

- Lexical information introduces context into CFG.
- Grammar is larger.
- Potential problems of sparse data.
- Possible solutions: Smoothing; back-off estimates.

If you don't have data for a fine-grained situation, use data from a coarser-grained situation in which it's contained.

Collins 2003

Can condition on *any* information available in generating the tree.

- **Basic idea:** Avoid sparseness of lexicalization by decomposing rules.
 - Make plausible independence assumptions.
 - Break rules down into small steps (small number of parameters).
 - Each rule parameterized with word+PoS-tag pair: S(bought,VBD) \rightarrow NP(week,NN) NP(IBM,NNP) VP(bought,VBD)

Collins' first model 1

Lexical Rules, with probability 1.0: $tag(word, tag) \rightarrow word$

Internal Rules, with treebank-based probabilities. Separate terminals to the left and right of the head; generate one at a time:

$$X \rightarrow L_n L_{n-1} \dots L_1 H R_1 \dots R_{m-1} R_m \quad (n, m \ge 0)$$

X, *L*_{*i*}, *H*, and *R*_{*i*} all have the form **cat(head,tag)**. Notation: Italic lowercase symbol for (head,tag):

 $X(x) \rightarrow L_n(l_n)L_{n-1}(l_{n-1})...L_1(l_1) H(h) R_1(r_1)...R_{m-1}(r_{m-1}) R_m(r_m)$

Collins' first model 2

Assume there are additional L_{n+1} and R_{m+1} representing phrase boundaries ("STOP").

Example: $S(bought, VBD) \rightarrow NP(week, NN) NP(IBM, NNP) VP(bought, VBD)$ n = 2, m = 0 (two constituents on the left of the head, zero on the right). $X = S, H = VP, L_1 = NP, L_2 = NP, L_3 = STOP, R_1 = STOP.$ $h = (bought, VBD), l_1 = (IBM, NNP), l_2 = (week, NN).$

Distinguish probabilities of heads *P*_h, of left constituents *P*_l, and of right constituents *P*_r.

Probabilities of internal rules 1

 $= P(L_{n+1}(l_{n+1})L_n(l_n) \dots L_1(l_1) H(h) R_1(r_1) \dots R_m(r_m) R_{m+1}(r_{m+1}) | X, h)$ = $P_h(H | X, h)$

Probabilities of internal rules 2

Collins' first model 3

Backs off ...

to tag probability when no data for specific word;

• to complete non-lexicalization when necessary.

Collins' 2nd and 3rd models

Model 2: Add verb subcategorization and argument/adjunct distinction.

Model 3: Integrate gaps into model.

• Especially important with addition of subcategorization.

Results and conclusions 3

Model 2 outperforms Model 1.

Model 3: Similar performance, but identifies traces too.

Model 2 performs best overall:

- LP = 89.6, LR = 89.9 [sentences ≤ 100 words].
- LP = 90.1, LR = 90.4 [sentences ≤ 40 words].

Rich information improves parsing performance.

Results and conclusions 2

Strengths:

- Incorporation of lexical and other linguistic information.
- Competitive results.

Weaknesses:

- Supervised training.
- Performance tightly linked to particular type of corpus used.

Results and conclusions 3

Importance to CL:

- High-performance parser showing benefits of lexicalization and linguistic information.
- Publicly available, widely used in research.

Unsupervised inside-outside

The **inside-outside** algorithm is a **glorious** generalization of the forward-backward algorithm that learns grammars **without** annotated data.

